Morphine Dependency Blocked By Single Genetic Change
Morphine’s serious side effect as a pain killer – its potential to create dependency – has been almost completely eliminated in research with mice by genetically modifying a single trait on the surface of neurons. The study scientists think a drug can be developed to similarly block dependency.
The scientists were led by Jennifer Whistler, PhD, an investigator in the UCSF-affiliated Ernest Gallo Clinic and Research Center, and associate professor of neurology at UCSF.
Millions of people in the U.S. are given the opiate drug morphine for extreme pain caused by cancer, surgery, nerve damage and other conditions. It remains the pain killer of choice for many types of short-term pain, such as surgery, according to Whistler, but it is less useful for the treatment of chronic pain because its effectiveness decreases with continued use in a process called tolerance. As a consequence, an increasingly larger dose is required to treat the pain, thereby increasing the chance of addiction.
The body’s natural pain killers, such as endorphins, ease pain by first binding to receptors on the surface of neurons. The receptors cycle on and off “like a light switch,” Whistler says, regulating the intake of endorphin. This crucial control is absent when the neurons encounter morphine. The researchers’ strategy in their study was to try to trick neurons into responding to morphine in the more regulated way.
Strong evidence suggests that the natural on-off cycling occurs because the endorphin receptor withdraws from the cell surface, toward the cell’s interior, Whistler says. The migration from the cell surface is called endocytosis.
When the neuron receptors encounter morphine the light switch is broken, and the nervous system responds by becoming more tolerant of the drug, making the recipient more dependent on the drug.
To demonstrate their hunch that morphine’s unwanted effects were caused by the failure of its receptor to withdraw from the cell surface, the researchers genetically engineered mice with a single difference from normal mice: Receptors that encounter morphine in these mice can undergo endocytosis, as they normally do in the presence of endorphins. The researchers showed that with this single change, morphine remained an excellent pain killer without inducing tolerance and dependence.
“As more pain medications are being removed from the market, new strategies to overcome chronic pain become crucial,” Whistler says. “If new opiate drugs can be developed with morphine’s pain killing properties but also with the ability to promote endocytosis, they could be less likely to cause the serious side effects of tolerance and dependence.”
1 Comments:
I suffered from prescription drug addiction and alcoholism for 15 years. Now that I am clean and sober I have had my story published. It is called Constant Cravings: One Man's True Story of His Struggle With Prescription Drug Addiction. My hope for this book is that it will help addicts and their families as much as writing it helped me.
It is avaliable at: www.eloquentbooks.com/ConstantCravings.html
Post a Comment
<< Home